50 research outputs found

    The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy

    Get PDF
    Recent studies have focused on the role of the cerebellum in the social domain, including in Theory of Mind (ToM). ToM, or the "mentalizing" process, is the ability to attribute mental states, such as emotion, intentions and beliefs, to others to explain and predict their behavior. It is a fundamental aspect of social cognition and crucial for social interactions, together with more automatic mechanisms, such as emotion contagion. Social cognition requires complex interactions between limbic, associative areas and subcortical structures, including the cerebellum. It has been hypothesized that the typical cerebellar role in adaptive control and predictive coding could also be extended to social behavior. The present study aimed to investigate the social cognition abilities of patients with degenerative cerebellar atrophy to understand whether the cerebellum acts in specific ToM components playing a role as predictive structure. To this aim, an social cognition battery was administered to 27 patients with degenerative cerebellar pathology and 27 healthy controls. In addition, 3D T1-weighted and resting-state fMRI scans were collected to characterize the structural and functional changes in cerebello-cortical loops. The results evidenced that the patients were impaired in lower-level processes of immediate perception as well as in the more complex conceptual level of mentalization. Furthermore, they presented a pattern of GM reduction in cerebellar portions that are involved in the social domain such as crus I-II, lobule IX and lobule VIIIa. These areas showed decreased functional connectivity with projection cerebral areas involved in specific aspects of social cognition. These findings boost the idea that the cerebellar modulatory function on the cortical projection areas subtends the social cognition process at different levels. Particularly, regarding the lower-level processes, the cerebellum may act by implicitly matching the external information (i.e., expression of the eyes) with the respective internal representation to guarantee an immediate judgment about the mental state of others. Otherwise, at a more complex conceptual level, the cerebellum seems to be involved in the construction of internal models of mental processes during social interactions in which the prediction of sequential events plays a role, allowing us to anticipate the other person's behavior

    The role of the cerebellum in unconsciuos and conscious processing of emotions: a review

    Get PDF
    Studies from the past three decades have demonstrated that there is cerebellar involvement in the emotional domain. Emotional processing in humans requires both unconscious and conscious mechanisms. A significant amount of evidence indicates that the cerebellum is one of the cerebral structures that subserve emotional processing, although conflicting data have been reported on its function in unconscious and conscious mechanisms. This review discusses the available clinical, neuroimaging and neurophysiological data on this issue. We also propose a model in which the cerebellum acts as a mediator between the internal state and external environment for the unconscious and conscious levels of emotional processing

    Patterns of cerebellar gray matter atrophy across Alzheimer's disease progression

    Get PDF
    The role of the cerebellum in cognitive function has been broadly investigated in the last decades from an anatomical, clinical, and functional point of view and new evidence points toward a significant contribution of the posterior lobes of the cerebellum in cognition in Alzheimer's disease (AD). In the present work we used SUIT-VBM (spatially unbiased infratentorial template, voxel-based morphometry) to perform an analysis of the pattern of cerebellar gray matter (GM) atrophy in amnestic mild cognitive impairment (a-MCI) and AD dementia patients compared to healthy subjects (HS), in order to follow the changes of non-motor features of cerebellar degeneration throughout disease progression. This template has been validated to guarantee a significant improvement in voxel-to-voxel alignment of the individual fissures and the deep cerebellar nuclei compared to Montreal Neurological Institute (MNI) whole-brain template. Our analysis shows a progression of cerebellar GM volume changes throughout a continuous spectrum from early to late clinical stages of AD. In particular vermis and paravermian areas of the anterior (I-V) and posterior (VI) lobes are involved since the a-MCI stage, with a later involvement of the hemispheric part of the posterior lobes (VI lobule) and Crus I in AD dementia patients only. These findings support the role of the cerebellum in higher-level functions, and whilst confirming previous data on the involvement of Crus I in AD dementia, provide new evidence of an involvement of the vermis in the early stages of the disease

    Editorial: The cerebellar role in psychiatric disorders: Emerging evidence and future perspectives

    Get PDF
    First paragraph: Over the past decades, clinical, neuroimaging, anatomical, and physiological studies have established the presence of a “cognitive” and a “limbic” cerebellum—the former being represented primarily in posterolateral regions and the dentate nuclei, and the latter in the vermis and the fastigial nuclei (Schmahmann et al., 2007). The “dysmetria of thought,” following damage to the cognitive cerebellum (Schmahmann, 1998) and the neuropsychiatric impairments, following damage to the limbic cerebellum (Schmahmann et al., 2007) comprise the so called “cerebellar cognitive affective syndrome” (Schmahmann and Sherman, 1998). These findings have recently renewed interest in a cerebellar pathophysiology of a broad range of neurodevelopmental and psychiatric disorders (e.g. Hoppenbrouwers et al., 2008; Lupo et al., 2019; Van Overwalle et al., 2020)

    Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in social functioning. Core autistics traits refer to poor social and imagination skills, poor attention-switching/strong focus of attention, exceptional attention to detail, as expressed by the autism-spectrum quotient. Over the years, the importance of the cerebellum in the aetiology of autism spectrum disorder has been acknowledged. Neuroimaging studies have provided a strong support to this view, showing both structural and functional connectivity alterations to affect the cerebellum in autism spectrum disorder. According to the underconnectivity theory, disrupted connectivity within cerebello-cerebral networks has been specifically implicated in the aetiology of autism spectrum disorder. However, inconsistent results have been generated across studies. In this study, an integrated approach has been used in a selected population of adults with autism spectrum disorder to analyse both cerebellar morphometry and functional connectivity. In individuals with autism spectrum disorder, a decreased cerebellar grey matter volume affected the right Crus II, a region showing extensive connections with cerebral areas related to social functions. This grey matter reduction correlates with the degree of autistic traits as measured by autism-spectrum quotient. Interestingly, altered functional connectivity was found between the reduced cerebellar Crus II and contralateral cerebral regions, such as frontal and temporal areas. Overall, the present data suggest that adults with autism spectrum disorder present with specific cerebellar structural alterations that may affect functional connectivity within cerebello-cerebral modules relevant to social processing and account for core autistics traits

    "Mens Sana in Corpore Sano": The Emerging Link of Motor Reserve with Motor and Cognitive Abilities and Compensatory Brain Networks in SCA2 Patients

    Get PDF
    The ability to resiliently cope with neuropathological lesions is a key scientific concern. Accordingly, this study aims to investigate whether motor reserve (MR), likely to be boosted by exercise engagement in a lifetime, affects motor symptom severity, cognitive functioning, and functional brain networks in spinocerebellar ataxia type 2 (SCA2)-a cerebellar neurodegenerative disease. The MR of 12 SCA2 patients was assessed using the Motor Reserve Index Questionnaire (MRIq), developed ad hoc for estimating lifespan MR. The International Cooperative Ataxia Rating Scale was used to assess clinical motor features, and neuropsychological tests were used to evaluate cognitive functioning. Patients underwent an MRI examination, and network-based statistics (NBS) analysis was carried out to detect patterns of functional connectivity (FC). Significant correlations were found between MRIq measures and the severity of motor symptoms, educational and intellectual levels, executive function, and processing speed. NBS analysis revealed a higher FC within subnetworks consisting of specific cerebellar and cerebral areas. FC patterns were positively correlated with MRIq measures, likely indicating the identification of an MR network. The identified network might reflect a biomarker likely to underlie MR, influenced by education and cognitive functioning, and impacting the severity of motor symptoms

    Cerebellar white matter disruption in Alzheimer’s Disease patients: a Diffusion Tensor Imaging study

    Get PDF
    The cognitive role of the cerebellum has recently gained much attention, and its pivotal role in Alzheimer’s disease (AD) has now been widely recognized. Diffusion tensor imaging (DTI) has been used to evaluate the disruption of the microstructural milieu in AD, and though several white matter (WM) tracts such as corpus callosum, inferior and superior longitudinal fasciculus, cingulum, fornix, and uncinate fasciculus have been evaluated in AD, data on cerebellar WM tracts are currently lacking. We performed a tractography-based DTI reconstruction of the middle cerebellar peduncle (MCP), and the left and right superior cerebellar peduncles separately (SCPL and SCPR) and addressed the differences in fractional anisotropy (FA), axial diffusivity (Dax), radial diffusivity (RD), and mean diffusivity (MD) in the three tracts between 50 patients with AD and 25 healthy subjects. We found that AD patients showed a lower FA and a higher RD compared to healthy subjects in MCP, SCPL, and SCPR. Moreover, a higher MD was found in SCPR and SCPL and a higher Dax in SCPL. This result is important as it challenges the traditional view that WM bundles in the cerebellum are unaffected in AD and might identify new targets for therapeutic interventions

    The cerebellar topography of attention sub-components in Spinocerebellar Ataxia Type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome and multiple-domain cognitive impairments. The cerebellum is known to contribute to distinct functional networks related to higher-level functions. The aims of the present study were to investigate the different sub-components of attention and to analyse possible correlations between attention deficits and specific cerebellar regions in SCA2 patients. To this purpose, 11 SCA2 patients underwent an exhaustive attention battery that evaluated several attention sub-components. The SCA2 group performed below the normal range in tasks assessing selective attention, divided attention, and sustained attention, obtaining negative Z-scores. These results were confirmed by non-parametric Mann-Whitney U tests that showed significant differences between SCA2 and control subjects in the same sub-components of the attention battery, allowing us to speculate on cerebellar involvement when a high cognitive demand is required (i.e., multisensory integration, sequencing, prediction of events, and inhibition of inappropriate response behaviours). The voxel-based morphometry analysis showed a pattern of significantly reduced grey matter volume in specific cerebellar lobules. In particular, the SCA2 patients showed significant grey matter loss in bilateral regions of the anterior cerebellar hemisphere (I-V) and in the posterior lobe (VI-IX) and posterior vermis (VI-IX). Statistical analysis found significant correlations between grey matter reductions in the VIIb/VIIIa cerebellar lobules and impairments in Sustained and Divided Attention tasks and between grey matter reduction in the vermal VI lobule and impairment in the Go/NoGo task. For the first time, the study demonstrated the involvement of specific cerebellar lobules in different sub-components of the attention domain, giving further support to the inclusion of the cerebellum within the attention network

    Functional changes of mentalizing network in SCA2 patients: novel insights into understanding the social cerebellum

    Get PDF
    In recent years, increasing evidence of the cerebellar role in social cognition has emerged. The cerebellum has been shown to modulate cortical activity of social brain regions serving as a regulator of function-specific mentalizing and mirroring processes. In particular, a mentalizing area in the posterior cerebellum, specifically Crus II, is preferentially recruited for more complex and abstract forms of social processing, together with mentalizing cerebral areas including the dorsal medial prefrontal cortex (dmPFC), the temporo-parietal junction (TPJ), and the precuneus. In the present study, the network-based statistics approach was used to assess functional connectivity (FC) differences within this mentalizing cerebello-cerebral network associated with a specific cerebellar damage. To this aim, patients affected by spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease specifically affecting regions of the cerebellar cortex, and age-matched healthy subjects have been enrolled. The dmPFC, left and right TPJ, the precuneus, and the cerebellar Crus II were used as regions of interest to construct the mentalizing network to be analyzed and evaluate pairwise functional relations between them. When compared with controls, SCA2 patients showed altered internodal connectivity between dmPFC, left (L-) and right (R-) TPJ, and right posterior cerebellar Crus II.The present results indicate that FC changes affect a function-specific mentalizing network in patients affected by cerebellar damage. In particular, they allow to better clarify functional alteration mechanisms driven by the cerebellar damage associated with SCA2 suggesting that selective cortico-cerebellar functional disconnections may underlie patients' social impairment in domain-specific complex and abstract forms of social functioning

    Comparison of cerebellar grey matter alterations in bipolar and cerebellar patients: evidence from voxel-based analysis

    Get PDF
    The aim of this study was to compare the patterns of cerebellar alterations associated with bipolar disease with those induced by the presence of cerebellar neurodegenerative pathologies to clarify the potential cerebellar contribution to bipolar affective disturbance. Twenty-nine patients affected by bipolar disorder, 32 subjects affected by cerebellar neurodegenerative pathologies, and 37 age-matched healthy subjects underwent a 3T MRI protocol. A voxel-based morphometry analysis was used to show similarities and differences in cerebellar grey matter (GM) loss between the groups. We found a pattern of GM cerebellar alterations in both bipolar and cerebellar groups that involved the anterior and posterior cerebellar regions (p = 0.05). The direct comparison between bipolar and cerebellar patients demonstrated a significant difference in GM loss in cerebellar neurodegenerative patients in the bilateral anterior and posterior motor cerebellar regions, such as lobules I−IV, V, VI, VIIIa, VIIIb, IX, VIIb and vermis VI, while a pattern of overlapping GM loss was evident in right lobule V, right crus I and bilateral crus II. Our findings showed, for the first time, common and different alteration patterns of specific cerebellar lobules in bipolar and neurodegenerative cerebellar patients, which allowed us to hypothesize a cerebellar role in the cognitive and mood dysregulation symptoms that characterize bipolar disorder
    corecore